Optimization of slitlike carbon nanopores for storage of hythane fuel at ambient temperatures.

نویسندگان

  • Piotr Kowalczyk
  • Suresh K Bhatia
چکیده

Carbons with slitlike pores can serve as effective host materials for storage of hythane fuel, a bridge between the petrol combustion and hydrogen fuel cells. We have used grand canonical Monte Carlo simulation for the modeling of the hydrogen and methane mixture storage at 293 K and pressure of methane and hydrogen mixture up to 2 MPa. We have found that these pores serve as efficient vessels for the storage of hythane fuel near ambient temperatures and low pressures. We find that, for carbons having optimized slitlike pores of size H congruent with 7 A (pore width that can accommodate one adsorbed methane layer), and bulk hydrogen mole fraction >or=0.9, the volumetric stored energy exceeds the 2010 target of 5.4 MJ dm(-3) established by the U.S. FreedomCAR Partnership. At the same condition, the content of hydrogen in slitlike carbon pores is approximately = 7% by energy. Thus, we have obtained the composition corresponding to hythane fuel in carbon nanospaces with greatly enhanced volumetric energy in comparison to the traditional compression method. We proposed the simple system with added extra container filled with pure free/adsorbed methane for adjusting the composition of the desorbed mixture as needed during delivery. Our simulation results indicate that light slit pore carbon nanomaterials with optimized parameters are suitable filling vessels for storage of hythane fuel. The proposed simple system consisting of main vessel with physisorbed hythane fuel, and an extra container filled with pure free/adsorbed methane will be particularly suitable for combustion of hythane fuel in buses and passenger cars near ambient temperatures and low pressures.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

پیش بینی زمان ماندگاری سوخت مایع در شرایط غیر همدما با استفاده از اندیس شدت واکنش

Shelf life prediction for liquid fuels depends on a reliable and efficient accelerated ageing method. Most of the available researches in this area are limited to isothermal ageing. Therefore, these isothermal ageing methods are not capable to predict shelf life for fuels at non-isothermal ageing conditions.  In the previous work, a new approach called reaction severity index was proposed for t...

متن کامل

Optimization of energy consumption and offering a procedure for cooling gas compression facilities at gas compression stations

One of the most important methods of transporting natural gas in Iran and other parts of the world is the utilization of a network of pipelines. Compression station and turbo compressor units play an important role in gas supply through pipelines. One of the primary concerns in these units is the reduction of fuel consumption. By cooling of exhaust gas from the source station, the pressure ...

متن کامل

State of hydrogen in idealized carbon slitlike nanopores at 77 K.

The purpose of this letter is to clarify recent findings and answer to the question: "What is the state of hydrogen in carbon slitlike pores at 77 K?" For this purpose, we determined the volumetric density of hydrogen in idealized carbon pores of molecular dimension at 77 K and pressure up to 1 MPa. We used quantum corrected grand canonical Monte Carlo simulation. We recognized the highest volu...

متن کامل

Optimization of energy consumption and offering a procedure for cooling gas compression facilities at gas compression stations

One of the most important methods of transporting natural gas in Iran and other parts of the world is the utilization of a network of pipelines. Compression station and turbo compressor units play an important role in gas supply through pipelines. One of the primary concerns in these units is the reduction of fuel consumption. By cooling of exhaust gas from the source station, the pressure drop...

متن کامل

Sensitivity analysis of parameters affecting carbon footprint of fossil fuel power plants based on life cycle assessment scenarios

In this study a pseudo comprehensive carbon footprint model for fossil fuel power plants is presented. Parameters which their effects are considered in this study include: plant type, fuel type, fuel transmission type, internal consumption of the plant, degradation, site ambient condition, transmission and distribution losses. Investigating internal consumption, degradation and site ambient con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The journal of physical chemistry. B

دوره 110 47  شماره 

صفحات  -

تاریخ انتشار 2006